Advertisements
Advertisements
प्रश्न
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
उत्तर १
Let I = `int 1/(x^2(x^4 + 1)^(3/4)` dx
put x = `sqrt(tan theta)`
`therefore dx = 1/2 (tan theta)^(1/2 - 1) * sec^2 theta d theta`
`= (sec^2 theta)/(2sqrt(tan theta))dθ`
`= int 1/(tan θ (tan^2 θ + 1)^(3/4)) * (sec^2 θ)/(2sqrt(tan θ))`dx
`= 1/2 int (sec^2 θ d θ)/(tan θ * sec^(3/2) θ * sqrt(tan θ))`
`= 1/2 int (sec^2 θ dθ)/((tan θ * sec θ)^(3/2))`
`= 1/2 int (sec^2 θ dθ)/((sin θ)/(cos θ) * sec θ)^(3/2)`
`= 1/2 int (sec^2 θ dθ)/(sin^(3/2) θ (sec^2θ)^(3/2))`
`therefore 1/2 int (sec^2 θ dθ)/(sin^(3/2) θ (sec^3 θ))`
`= 1/2 int (cos θ dθ)/(sin^(3/2) θ)`
Putting sin θ = t,
cos θ dθ = dt
`therefore I = 1/2 int dt/t^(3//2) = 1/2 int t^(-3/2)` dt
`= 1/2 (-2)t^(- 1/2) + C`
`= - 1/sqrtt + C`
`= - 1/sqrt(sin theta) + C`
Putting x = `sqrt(tan θ)`,
tan θ = x2
`therefore sin theta = x^2/sqrt(1 + x^4)`
`sqrt(sin theta) = x/(1 + x^4)^(1/4)`
Putting this value in equation (1),
`I = - 1/sqrt(sin theta) + C`
`= ((1 + x^4)^(1/4))/x + C`
Hence, `int 1/(x^2(x^4 + 1)^(3/4)) dx `
`= - (1 + x^4)^(1//4)/x` + C
उत्तर २
Let `I = int dx/(x^2 (x^4 + 1)^(3/4))`
`= dx/(x^5 (1 + 1/x^4)^(3/4))`
Put `1 + 1/x^4 = t`
⇒ `-4/x^5` dx = dt
∴ `I = -1/4 int dt/t^(3/4)`
`= -1/4 int^(-3/4) dt`
`= -1/4 t^(1/4)/(1/4) + C`
`= -(t)^(1/4) + C`
`= - (1 + 1/x^4)^(1/4) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate `int tan^(-1) sqrtx dx`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
What is anti derivative of `e^(2x)`
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.