Advertisements
Advertisements
प्रश्न
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
उत्तर
Let `1/(xsqrt(ax - x^2))`
Put `x = a/t`
dx = `- a/t^2 dt`
Now, `xsqrt(ax - x^2) = a/tsqrt(a xx a/t - a^2/t^2)`
`= a^2/t sqrt(1/t - 1/t^2) = a^2/t^2 sqrt(t - 1)`
`therefore I = 1/(a^2/t^2 sqrt(t - 1)) xx (- a)/t^2 dt`
`= - 1/a int 1/sqrt(t - 1) dt`
`= - 1/a ((t - 1)^(- 1/2 + 1))/(- 1/2 + 1) + C`
`= - 1/a (t - 1)^(1/2)/(1/2) + C`
`= - 2/a sqrt(t - 1) + C`
`= - 2/a sqrt(a/x - 1) + C`
`= - 2/a sqrt((a - x)/x) + C`
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
`int (dx)/(sin^2x cos^2x) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.