Advertisements
Advertisements
प्रश्न
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
उत्तर
Let I = `int (5x)/((x + 1)(x^2 + 9))`dx
`therefore (5x)/((x + 1)(x^2 + 9)) = A/(x + 1) + (Bx + C)/(x^2 + 9)`
`=> 5x = A(x^2 + 9) + (Bx + C)(x + 1)`
Putting x = -1 in equation (1),
- 5 = A(1 + 9)
⇒ - 5 = 10 A
`therefore A = - 5/10 = - 1/2`
From equation (1),
Comparing the coefficients of x2 and the constant term,
0 = A + B
⇒ B = - A = `1/2`
0 = 9A + C
⇒ C = - 9A = `9/2`
`therefore (5x)/((x + 1)(x^2 + 9)) = (- 1)/(2(x + 1)) + (1/2 x + 9/2)/(x^2 + 9)`
∴ `I = int(1/2)/(x + 1) dx + int (1/2 x + 9/2)/(x^2 + 9) dx`
`= -1/2 log (x + 1) + 1/4 int (2x)/(x^2 + 9) dx + 9/2 int dx/ (x^2 + 3^2) + C`
`= -1/2 log (x + 1) + 1/4 log (x^2 + 9) + 9/2 xx 1/3 tan^-1 x/3 + C`
`= -1/2 log (x + 1) + 1/4 log (x^2 + 9) + 3/2 tan^-1 x/3 + C`
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (dx)/(x(x^2 + 1))` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
`d/(dx)x^(logx)` = ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.