Advertisements
Advertisements
प्रश्न
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
उत्तर
we know that,
`d/dx` cos 2x = - 2 sin 2x
or sin 2x = `d/dx (- 1/2 "cos 2x")`
and `d/dx e^(3x) = 3e^(3x)`
or `e^(3x) = d/dx (1/3 e^(3x))`
Hence, sin 2x - 4e3x
`= d/dx (- 1/2 cos 2x) - 4 d/dx (1/3 e^(3x))`
`= d/dx (- 1/2 cos 2x - 4/3 e^(3x))`
APPEARS IN
संबंधित प्रश्न
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Evaluate `int tan^(-1) sqrtx dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (dx)/(sin^2x cos^2x) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
`d/(dx)x^(logx)` = ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.