Advertisements
Advertisements
प्रश्न
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
उत्तर
Let `I = 1/((x^2 + 1)(x^2 + 4)) = 1/((y + 1)(y + 4))`
Where x2 = y
`= A/(y + 1) + B/(y + 4)`
`=> A(y + 4) + B(y + 1)` ...(1)
Putting y = -1 in equation (1),
∴ 1 = A(- 1 + 4)
`=> A = 1/3`
Putting y = -4 in equation (1),
∴ 1 = B(- 4 + 1)
`=> B = - 1/3`
`therefore 1/((x^2 + 1)(x^2 + 4)) = 1/(3 (y + 1)) - 1/(3 (y + 4))`
`= 1/(3 (x^2 + 1)) - 1/(3 (x^2 + 4))`
Now, `I = int [1/ (3(x^2 + 1)) - 1/ (3(x^2 + 4))] dx`
`= (1/3 tan^-1 x) - (1/3 xx 1/2 tan^-1 (x/2)) + C`
`= 1/3 tan^-1 x - 1/6 tan^-1 (x/2) + C`
APPEARS IN
संबंधित प्रश्न
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Evaluate `int tan^(-1) sqrtx dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int sqrt(1 + x^2) dx` is equal to
`d/(dx)x^(logx)` = ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.