Advertisements
Advertisements
प्रश्न
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
उत्तर
Let `I = (x^2 + x + 1)/((x + 1)^2 (x + 2)) dx`
Now, `(x^2 + x + 1)/((x + 1)^2 (x + 2))`
`= A/(x + 2) + B/(x + 1) + C/(x + 1)^2`
∴ x2 + x + 1 ≡ A(x + 1)2 + B(x + 2)(x + 1) + C(x + 2)
put x = -2.
⇒ 4 - 2 + 1 = A(- 1)2
and 3 = A
A = 3
Put x = - 1
⇒ 1 - 1 + 1 = C(- 1 + 2)
∴ C = 1
Comparing the coefficient of x2,
1 = A + B
B = 1 - A = 1 - 3
∴ B = - 2
∴ `(x^2 + x + 1)/((x + 1)^2 - (x + 2))`
`= 3/(x + 2) - 2/(x + 1) + 1/(x + 1)^2`
∴ I = `int (x^2 + x + 1)/((x + 1)^2 - (x + 2)) dx`
`= int 3/(x + 2) dx - 2int 1/(x + 1) dx + int 1/(x + 1)^2 dx`
`= 3 log (x + 2) - 2 log (x + 1) - 1/(x + 1) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (dx)/sqrt(9x - 4x^2)` equals
`int (xdx)/((x - 1)(x - 2))` equals
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
`d/(dx)x^(logx)` = ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.