Advertisements
Advertisements
प्रश्न
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
उत्तर
Let `I = sqrt((1 - sqrtx)/(1 + sqrtx))`dx
`sqrtx = cos t`
=> x = cos2 t
dx = - 2 cos t sin t dt
I = `int sqrt((1 - cos t)/(1 + cos t)) * (- 2 cos t sin t) dt`
`= - 2 int sqrt((2 sin^2 t/2)/(2 cos^2 t/2)) cos t sin t dt` ...`[because 1 + cos A = 2 cos^2 A/2, 1 - cos A = 2 sin^2 A/2]`
`= - 2 int (sin t/2)/(cot t/2) (2 sin t/2 cos t/2 t) dt .....[because sin A = 2 sin A/2 cos A/2]`
`= - 4 int sin^2 t/2 cos t dt`
`= - 4 int (1 - cos t)/2 cos t dt`
`= - 2 int (cos t - cos^2 t) dt`
`= - 2 int [cos t - (1 + cos 2t)/2] dt`
`= - 2 sin t + (t + (sin 2t)/2) + C`
`= - int (2 cos t - 1 - cos 2t) dt`
`= - [2 sint - t - (sin 2t)/2] + C`
`= - [2 sin t - t - sin t cos t] + C`
`= - [2 sqrt (1 - x) - cos ^-1 sqrt x - sqrt (1 - x) * sqrt x] + C`
`= -2 sqrt (1 - x) + cos^-1 sqrt x + sqrtx * sqrt (1 - x) + C`
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int sqrt(1 + x^2) dx` is equal to
What is anti derivative of `e^(2x)`
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.