Advertisements
Advertisements
प्रश्न
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
उत्तर
Let `I = sqrt((1 - sqrtx)/(1 + sqrtx))`dx
`sqrtx = cos t`
=> x = cos2 t
dx = - 2 cos t sin t dt
I = `int sqrt((1 - cos t)/(1 + cos t)) * (- 2 cos t sin t) dt`
`= - 2 int sqrt((2 sin^2 t/2)/(2 cos^2 t/2)) cos t sin t dt` ...`[because 1 + cos A = 2 cos^2 A/2, 1 - cos A = 2 sin^2 A/2]`
`= - 2 int (sin t/2)/(cot t/2) (2 sin t/2 cos t/2 t) dt .....[because sin A = 2 sin A/2 cos A/2]`
`= - 4 int sin^2 t/2 cos t dt`
`= - 4 int (1 - cos t)/2 cos t dt`
`= - 2 int (cos t - cos^2 t) dt`
`= - 2 int [cos t - (1 + cos 2t)/2] dt`
`= - 2 sin t + (t + (sin 2t)/2) + C`
`= - int (2 cos t - 1 - cos 2t) dt`
`= - [2 sint - t - (sin 2t)/2] + C`
`= - [2 sin t - t - sin t cos t] + C`
`= - [2 sqrt (1 - x) - cos ^-1 sqrt x - sqrt (1 - x) * sqrt x] + C`
`= -2 sqrt (1 - x) + cos^-1 sqrt x + sqrtx * sqrt (1 - x) + C`
APPEARS IN
संबंधित प्रश्न
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate `int tan^(-1) sqrtx dx`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (xdx)/((x - 1)(x - 2))` equals
`int sqrt(1 + x^2) dx` is equal to
What is anti derivative of `e^(2x)`
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.