मराठी

Integrate the function: x2+1[log(x2+1)-2logx]x4 - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function:

`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`

बेरीज

उत्तर

Let `I = int (sqrt(x^2 + 1)[log (x^2 + 1) - 2 log x])/x^4`dx

`= int (sqrt(x^2 + 1)[log (x^2 + 1) - log x^2])/x^4`dx

`= int sqrt(x^2 + 1)/x^4 * log ((x^2 + 1)/x^2)`dx

`= int (sqrt(x^2 + 1))/x^4 log (1 + 1/x^2)`dx

Putting x = tan θ,

⇒ dx = sec2 θ dθ

∴ I = `sqrt(1 + tan^2 theta)/(tan^4 theta) log  (1 + 1/(tan^2  theta)) * sec^2 θ  dθ`

`= int (sec θ)/(tan^4 theta) * [log (1 + cot^2 theta)] sec^2 θ  d θ`

`= int [log (cosec^2 θ)] * (cos^4 θ)/(sin^4 θ) * sec^3 θ  dθ`

`= - 2 int (log sin θ) * (cos θ)/(sin^4 θ) dθ`

Put sin θ = t

cos θ dθ = dt

∴ I = `- 2 int (log t) * 1/t^4  dt`

Let us take log t as the first function.

I = `- 2 [(log t) int t^-4 dt - int (d/dt (log t) int t^-4 dt)dt]`

`= - 2 [log t(- 1/(3t^3)) - int 1/t(- 1/(3t^3))dt]`

`= -2 [- (log t)/3t^3 + 1/3 int t^-4 dt]`

`= 2/3 (log t)/t^3 - 2/3 (- 1/3 t^-3) + C`

`= 2/9 [(3 log t)/t^3 + 1/t^3] + C`

`= 2/9 [(3 log t + 1)/t^3] + C`

Now t = sin θ and tan θ = x

`therefore t = sin theta = x/(sqrt(1 + x^2))`

`therefore I = 2/9 [(3 log (x/(sqrt(x^2 + 1))) + 1)/(x/sqrt(1 + x^2))^3] + C`

`= (2 (1 + x))^(3/2)/(9x^3) [3 log  x/(sqrt(x^2 + 1)) + 1] + C`

`= 2/9 (1 + x^2)^(3/2)/x^3 * 3 log ((1 + x^2)/x^2)^(- 1/2) + 2/9 (1 + x^2)^(3/2)/x^3 + C`

`= - 1/3 (1 + 1/x^2)^(3/2) log (1 + 1/x^2) + 2/9 (1 + 1/x^2)^(3/2) + C`

`= - 1/3 (1 + 1/x^2)^(3/2) [log (1 + 1/x^2) - 2/3] + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.12 | Q 24 | पृष्ठ ३५३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write the antiderivative of `(3sqrtx+1/sqrtx).`


 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

Find an anti derivative (or integral) of the following function by the method of inspection.

(axe + b)2


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`int (4e^(3x) + 1)`


Find the following integrals:

`int(2x^2 + e^x)dx`


Find the following integrals:

`int (x^3 - x^2 + x - 1)/(x - 1) dx`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`intsqrtx( 3x^2 + 2x + 3) dx`


Find the following integrals:

`int(2x - 3cos x + e^x) dx`


Find the following integrals:

`int(2x^2 - 3sinx + 5sqrtx) dx`


Find the following integrals:

`intsec x (sec x + tan x) dx`


Find the following integrals:

`int (2 - 3 sinx)/(cos^2 x) dx.`


The anti derivative of `(sqrtx + 1/ sqrtx)` equals:


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`(e^(5log x) -  e^(4log x))/(e^(3log x) - e^(2log x))`


Integrate the function:

`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`


Integrate the function:

`1/((x^2 + 1)(x^2 + 4))`


Integrate the function:

`1/sqrt(sin^3 x sin(x + alpha))`


Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Integrate the function:

`tan^(-1) sqrt((1-x)/(1+x))`


Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .


Evaluate: `int  (1 - cos x)/(cos x(1 + cos x))  dx`


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`sqrt((10x^9 + 10^x  log e^10)/(x^10 + 10^x)) dx` equals


`int (dx)/(sin^2x cos^2x) dx` equals


`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int (dx)/(x(x^2 + 1))` equals


`f x^2 e^(x^3) dx` equals


`int sqrt(1 + x^2) dx` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×