Advertisements
Advertisements
प्रश्न
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
उत्तर
Let `I = int (sqrt(x^2 + 1)[log (x^2 + 1) - 2 log x])/x^4`dx
`= int (sqrt(x^2 + 1)[log (x^2 + 1) - log x^2])/x^4`dx
`= int sqrt(x^2 + 1)/x^4 * log ((x^2 + 1)/x^2)`dx
`= int (sqrt(x^2 + 1))/x^4 log (1 + 1/x^2)`dx
Putting x = tan θ,
⇒ dx = sec2 θ dθ
∴ I = `sqrt(1 + tan^2 theta)/(tan^4 theta) log (1 + 1/(tan^2 theta)) * sec^2 θ dθ`
`= int (sec θ)/(tan^4 theta) * [log (1 + cot^2 theta)] sec^2 θ d θ`
`= int [log (cosec^2 θ)] * (cos^4 θ)/(sin^4 θ) * sec^3 θ dθ`
`= - 2 int (log sin θ) * (cos θ)/(sin^4 θ) dθ`
Put sin θ = t
cos θ dθ = dt
∴ I = `- 2 int (log t) * 1/t^4 dt`
Let us take log t as the first function.
I = `- 2 [(log t) int t^-4 dt - int (d/dt (log t) int t^-4 dt)dt]`
`= - 2 [log t(- 1/(3t^3)) - int 1/t(- 1/(3t^3))dt]`
`= -2 [- (log t)/3t^3 + 1/3 int t^-4 dt]`
`= 2/3 (log t)/t^3 - 2/3 (- 1/3 t^-3) + C`
`= 2/9 [(3 log t)/t^3 + 1/t^3] + C`
`= 2/9 [(3 log t + 1)/t^3] + C`
Now t = sin θ and tan θ = x
`therefore t = sin theta = x/(sqrt(1 + x^2))`
`therefore I = 2/9 [(3 log (x/(sqrt(x^2 + 1))) + 1)/(x/sqrt(1 + x^2))^3] + C`
`= (2 (1 + x))^(3/2)/(9x^3) [3 log x/(sqrt(x^2 + 1)) + 1] + C`
`= 2/9 (1 + x^2)^(3/2)/x^3 * 3 log ((1 + x^2)/x^2)^(- 1/2) + 2/9 (1 + x^2)^(3/2)/x^3 + C`
`= - 1/3 (1 + 1/x^2)^(3/2) log (1 + 1/x^2) + 2/9 (1 + 1/x^2)^(3/2) + C`
`= - 1/3 (1 + 1/x^2)^(3/2) [log (1 + 1/x^2) - 2/3] + C`
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (dx)/(sin^2x cos^2x) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
`int sqrt(1 + x^2) dx` is equal to