Advertisements
Advertisements
Question
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Solution
Let `I = int (sqrt(x^2 + 1)[log (x^2 + 1) - 2 log x])/x^4`dx
`= int (sqrt(x^2 + 1)[log (x^2 + 1) - log x^2])/x^4`dx
`= int sqrt(x^2 + 1)/x^4 * log ((x^2 + 1)/x^2)`dx
`= int (sqrt(x^2 + 1))/x^4 log (1 + 1/x^2)`dx
Putting x = tan θ,
⇒ dx = sec2 θ dθ
∴ I = `sqrt(1 + tan^2 theta)/(tan^4 theta) log (1 + 1/(tan^2 theta)) * sec^2 θ dθ`
`= int (sec θ)/(tan^4 theta) * [log (1 + cot^2 theta)] sec^2 θ d θ`
`= int [log (cosec^2 θ)] * (cos^4 θ)/(sin^4 θ) * sec^3 θ dθ`
`= - 2 int (log sin θ) * (cos θ)/(sin^4 θ) dθ`
Put sin θ = t
cos θ dθ = dt
∴ I = `- 2 int (log t) * 1/t^4 dt`
Let us take log t as the first function.
I = `- 2 [(log t) int t^-4 dt - int (d/dt (log t) int t^-4 dt)dt]`
`= - 2 [log t(- 1/(3t^3)) - int 1/t(- 1/(3t^3))dt]`
`= -2 [- (log t)/3t^3 + 1/3 int t^-4 dt]`
`= 2/3 (log t)/t^3 - 2/3 (- 1/3 t^-3) + C`
`= 2/9 [(3 log t)/t^3 + 1/t^3] + C`
`= 2/9 [(3 log t + 1)/t^3] + C`
Now t = sin θ and tan θ = x
`therefore t = sin theta = x/(sqrt(1 + x^2))`
`therefore I = 2/9 [(3 log (x/(sqrt(x^2 + 1))) + 1)/(x/sqrt(1 + x^2))^3] + C`
`= (2 (1 + x))^(3/2)/(9x^3) [3 log x/(sqrt(x^2 + 1)) + 1] + C`
`= 2/9 (1 + x^2)^(3/2)/x^3 * 3 log ((1 + x^2)/x^2)^(- 1/2) + 2/9 (1 + x^2)^(3/2)/x^3 + C`
`= - 1/3 (1 + 1/x^2)^(3/2) log (1 + 1/x^2) + 2/9 (1 + 1/x^2)^(3/2) + C`
`= - 1/3 (1 + 1/x^2)^(3/2) [log (1 + 1/x^2) - 2/3] + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`f x^2 e^(x^3) dx` equals
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.