Advertisements
Advertisements
Question
Integrate the function:
`x^3/(sqrt(1-x^8)`
Solution
Let `I = x^3/(sqrt(1 - x^8))` dx
`= 1/4 int (4x^3)/(sqrt (1 - (x^4)^2))`
On substituting x4 = t
4x3 dx = dt
⇒ `x^3 = 1/4 dt`
Hence, `I = 1/4 int dt/sqrt(1 - t^2)`
`= 1/4 sin^-1 t + C`
`= 1/4 sin^-1 (x^4) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Evaluate `int tan^(-1) sqrtx dx`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (dx)/sqrt(9x - 4x^2)` equal
`f x^2 e^(x^3) dx` equals
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.