Advertisements
Advertisements
Question
Evaluate `int tan^(-1) sqrtx dx`
Solution
`I = int tan^(-1) sqrtx dx`
Put `sqrtx = t`
`1/(2sqrtx) dx = dt`
`dx = 2sqrtx dt -> dx = 2t dt`
`I = int 2t tan^(-1) t dt`
`I = 2[t^2/2 tan^(-1) t - 1/2 int t^2/(1+ t^2) dt]`
`I = 2[t^2/2 tan^1 t - 1/2 int [(1+t^2)/(1+t^2) - 1/(1+t^2)]dt]`
`I = [t^2 tan^(-1) t - t + tan^(-1) t] + c`
`I = t^2 tan^(-1) t - t + tan^(-1) t + c`
`I =(x + 1)tan^-1 sqrtx - sqrtx +c `
APPEARS IN
RELATED QUESTIONS
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int sqrt(1 + x^2) dx` is equal to