English

Evaluate `Int Tan^(-1) Sqrtx Dx` - Mathematics

Advertisements
Advertisements

Question

Evaluate `int tan^(-1) sqrtx dx`

Solution

`I = int tan^(-1) sqrtx dx`

Put `sqrtx = t`

`1/(2sqrtx) dx = dt`

`dx = 2sqrtx dt -> dx = 2t dt`

`I = int 2t tan^(-1) t dt`

`I = 2[t^2/2 tan^(-1) t - 1/2 int t^2/(1+ t^2) dt]`

`I = 2[t^2/2 tan^1 t - 1/2 int [(1+t^2)/(1+t^2) - 1/(1+t^2)]dt]`

`I = [t^2 tan^(-1) t - t + tan^(-1) t] + c`

`I = t^2 tan^(-1) t  - t + tan^(-1) t + c`

`I =(x + 1)tan^-1 sqrtx - sqrtx +c `

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find an anti derivative (or integral) of the following function by the method of inspection.

sin 2x


Find an anti derivative (or integral) of the following function by the method of inspection.

e2x


Find the following integrals:

`int (4e^(3x) + 1)`


Find the following integrals:

`int (ax^2 + bx + c) dx`


Find the following integrals:

`int (x^3 + 5x^2   -4)/x^2 dx`


Find the following integrals:

`int (x^3 + 3x + 4)/sqrtx dx`


Find the following integrals:

`int (x^3 - x^2 + x - 1)/(x - 1) dx`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`int(2x - 3cos x + e^x) dx`


Find the following integrals:

`int(2x^2 - 3sinx + 5sqrtx) dx`


Find the following integrals:

`intsec x (sec x + tan x) dx`


The anti derivative of `(sqrtx + 1/ sqrtx)` equals:


Integrate the function:

`1/(sqrt(x+a) + sqrt(x+b))`


Integrate the function:

`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`(e^(5log x) -  e^(4log x))/(e^(3log x) - e^(2log x))`


Integrate the function:

`e^x/((1+e^x)(2+e^x))`


Integrate the function:

`1/sqrt(sin^3 x sin(x + alpha))`


Integrate the function:

`tan^(-1) sqrt((1-x)/(1+x))`


Evaluate `int(x^3+5x^2 + 4x + 1)/x^2  dx`


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int (dx)/sqrt(9x - 4x^2)` equal


`int (dx)/sqrt(9x - 4x^2)` equals


`int sqrt(1 + x^2) dx` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×