हिंदी

Evaluate `Int Tan^(-1) Sqrtx Dx` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int tan^(-1) sqrtx dx`

उत्तर

`I = int tan^(-1) sqrtx dx`

Put `sqrtx = t`

`1/(2sqrtx) dx = dt`

`dx = 2sqrtx dt -> dx = 2t dt`

`I = int 2t tan^(-1) t dt`

`I = 2[t^2/2 tan^(-1) t - 1/2 int t^2/(1+ t^2) dt]`

`I = 2[t^2/2 tan^1 t - 1/2 int [(1+t^2)/(1+t^2) - 1/(1+t^2)]dt]`

`I = [t^2 tan^(-1) t - t + tan^(-1) t] + c`

`I = t^2 tan^(-1) t  - t + tan^(-1) t + c`

`I =(x + 1)tan^-1 sqrtx - sqrtx +c `

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).


Find the following integrals:

`intx^2 (1 - 1/x^2)dx`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`int(2x^2 - 3sinx + 5sqrtx) dx`


Integrate the function:

`1/(sqrt(x+a) + sqrt(x+b))`


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`(e^(5log x) -  e^(4log x))/(e^(3log x) - e^(2log x))`


Integrate the function:

`1/(cos (x+a) cos(x+b))`


Integrate the function:

`cos^3 xe^(log sinx)`


Integrate the function:

f' (ax + b) [f (ax + b)]n


Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`


Integrate the function:

`(x^2 + x + 1)/((x + 1)^2 (x + 2))`


Integrate the function:

`tan^(-1) sqrt((1-x)/(1+x))`


Integrate the function:

`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`sqrt((10x^9 + 10^x  log e^10)/(x^10 + 10^x)) dx` equals


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int (xdx)/((x - 1)(x - 2))` equals


`int (dx)/(x(x^2 + 1))` equals


`int e^x sec x(1 + tanx) dx` equals


`int sqrt(1 + x^2) dx` is equal to


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


`d/(dx)x^(logx)` = ______.


If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.


`int (dx)/sqrt(5x - 6 - x^2)` equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×