Advertisements
Advertisements
प्रश्न
Evaluate `int tan^(-1) sqrtx dx`
उत्तर
`I = int tan^(-1) sqrtx dx`
Put `sqrtx = t`
`1/(2sqrtx) dx = dt`
`dx = 2sqrtx dt -> dx = 2t dt`
`I = int 2t tan^(-1) t dt`
`I = 2[t^2/2 tan^(-1) t - 1/2 int t^2/(1+ t^2) dt]`
`I = 2[t^2/2 tan^1 t - 1/2 int [(1+t^2)/(1+t^2) - 1/(1+t^2)]dt]`
`I = [t^2 tan^(-1) t - t + tan^(-1) t] + c`
`I = t^2 tan^(-1) t - t + tan^(-1) t + c`
`I =(x + 1)tan^-1 sqrtx - sqrtx +c `
APPEARS IN
संबंधित प्रश्न
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.