Advertisements
Advertisements
प्रश्न
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
उत्तर
Let `I = int tan^-1 sqrt ((1 - x)/(1 + x)) dx`
Let x = cos θ
⇒ dx = -sinθ dθ
`= I = int tan^-1 sqrt ((1 - cos theta)/(1 + cos theta)) - sin theta d theta`
`= int - tan^-1 (tan theta/2) (sin theta) d theta`
`= - int theta/2 sin theta d theta`
`= -1/2 [theta int sin theta d theta - int d/(d theta) (theta) int sin theta d theta] d theta`
`= -1/2 [theta (- cos theta) - int 1 (-cos theta) d theta]`
`= 1/2 theta cos theta - 1/2 int cos theta d theta`
`= 1/2theta cos theta - 1/2 sin theta + C`
`= 1/2 theta cos theta - 1/2 sqrt (1 - cos^2 theta) + C`
`= 1/2 [x cos^-1 x sqrt (1 - x^2)] + C`
APPEARS IN
संबंधित प्रश्न
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (xdx)/((x - 1)(x - 2))` equals
`int e^x sec x(1 + tanx) dx` equals
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.