Advertisements
Advertisements
प्रश्न
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
उत्तर
Let `I = int (2 + sin 2x)/(1 + cos 2x) e^x dx`
`int (2 + 2 sin x cos x)/(1 + 2 cos^2 x - 1)e^x dx`
`= int (2 (1 + sin x cos x))/(2 cos^2 x) e^x dx`
`= int (sec^2 x * e^x + tan * e^x) dx`
`= int e^x (sec^2 x + tan x) dx`
Putting ex tan x = t
(ex sec2 x + tan x · ex)dx = dt
Hence, I = `int 1 * dt`
= t + C = ex tan x + C
APPEARS IN
संबंधित प्रश्न
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (dx)/(sin^2x cos^2x) dx` equals
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
What is anti derivative of `e^(2x)`
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.