हिंदी

Integrate the function: x2+1[log(x2+1)-2logx]x4 - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function:

`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`

योग

उत्तर

Let `I = int (sqrt(x^2 + 1)[log (x^2 + 1) - 2 log x])/x^4`dx

`= int (sqrt(x^2 + 1)[log (x^2 + 1) - log x^2])/x^4`dx

`= int sqrt(x^2 + 1)/x^4 * log ((x^2 + 1)/x^2)`dx

`= int (sqrt(x^2 + 1))/x^4 log (1 + 1/x^2)`dx

Putting x = tan θ,

⇒ dx = sec2 θ dθ

∴ I = `sqrt(1 + tan^2 theta)/(tan^4 theta) log  (1 + 1/(tan^2  theta)) * sec^2 θ  dθ`

`= int (sec θ)/(tan^4 theta) * [log (1 + cot^2 theta)] sec^2 θ  d θ`

`= int [log (cosec^2 θ)] * (cos^4 θ)/(sin^4 θ) * sec^3 θ  dθ`

`= - 2 int (log sin θ) * (cos θ)/(sin^4 θ) dθ`

Put sin θ = t

cos θ dθ = dt

∴ I = `- 2 int (log t) * 1/t^4  dt`

Let us take log t as the first function.

I = `- 2 [(log t) int t^-4 dt - int (d/dt (log t) int t^-4 dt)dt]`

`= - 2 [log t(- 1/(3t^3)) - int 1/t(- 1/(3t^3))dt]`

`= -2 [- (log t)/3t^3 + 1/3 int t^-4 dt]`

`= 2/3 (log t)/t^3 - 2/3 (- 1/3 t^-3) + C`

`= 2/9 [(3 log t)/t^3 + 1/t^3] + C`

`= 2/9 [(3 log t + 1)/t^3] + C`

Now t = sin θ and tan θ = x

`therefore t = sin theta = x/(sqrt(1 + x^2))`

`therefore I = 2/9 [(3 log (x/(sqrt(x^2 + 1))) + 1)/(x/sqrt(1 + x^2))^3] + C`

`= (2 (1 + x))^(3/2)/(9x^3) [3 log  x/(sqrt(x^2 + 1)) + 1] + C`

`= 2/9 (1 + x^2)^(3/2)/x^3 * 3 log ((1 + x^2)/x^2)^(- 1/2) + 2/9 (1 + x^2)^(3/2)/x^3 + C`

`= - 1/3 (1 + 1/x^2)^(3/2) log (1 + 1/x^2) + 2/9 (1 + 1/x^2)^(3/2) + C`

`= - 1/3 (1 + 1/x^2)^(3/2) [log (1 + 1/x^2) - 2/3] + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.12 | Q 24 | पृष्ठ ३५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).


Find an anti derivative (or integral) of the following function by the method of inspection.

(axe + b)2


Find the following integrals:

`int (ax^2 + bx + c) dx`


Find the following integrals:

`int(2x^2 + e^x)dx`


Find the following integrals:

`intsqrtx( 3x^2 + 2x + 3) dx`


Find the following integrals:

`int(2x^2 - 3sinx + 5sqrtx) dx`


Find the following integrals:

`intsec x (sec x + tan x) dx`


Find the following integrals:

`int(sec^2x)/(cosec^2x) dx`


Integrate the function:

`1/(x - x^3)`


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`1/(cos (x+a) cos(x+b))`


Integrate the function:

`e^x/((1+e^x)(2+e^x))`


Integrate the function:

`1/((x^2 + 1)(x^2 + 4))`


Integrate the function:

`e^(3log x) (x^4 + 1)^(-1)`


Integrate the function:

f' (ax + b) [f (ax + b)]n


Integrate the function:

`1/sqrt(sin^3 x sin(x + alpha))`


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .


Evaluate: `int  (1 - cos x)/(cos x(1 + cos x))  dx`


`int (dx)/(sin^2x cos^2x) dx` equals


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int (dx)/sqrt(9x - 4x^2)` equal


`int (dx)/sqrt(9x - 4x^2)` equals


`int (xdx)/((x - 1)(x - 2))` equals


`int (dx)/(x(x^2 + 1))` equals


`f x^2 e^(x^3) dx` equals


`int sqrt(1 + x^2) dx` is equal to


`int sqrt(x^2 - 8x + 7)  dx` is equal to:-


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


`d/(dx)x^(logx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×