Advertisements
Advertisements
प्रश्न
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
उत्तर
Let `I = int (sqrt(x^2 + 1)[log (x^2 + 1) - 2 log x])/x^4`dx
`= int (sqrt(x^2 + 1)[log (x^2 + 1) - log x^2])/x^4`dx
`= int sqrt(x^2 + 1)/x^4 * log ((x^2 + 1)/x^2)`dx
`= int (sqrt(x^2 + 1))/x^4 log (1 + 1/x^2)`dx
Putting x = tan θ,
⇒ dx = sec2 θ dθ
∴ I = `sqrt(1 + tan^2 theta)/(tan^4 theta) log (1 + 1/(tan^2 theta)) * sec^2 θ dθ`
`= int (sec θ)/(tan^4 theta) * [log (1 + cot^2 theta)] sec^2 θ d θ`
`= int [log (cosec^2 θ)] * (cos^4 θ)/(sin^4 θ) * sec^3 θ dθ`
`= - 2 int (log sin θ) * (cos θ)/(sin^4 θ) dθ`
Put sin θ = t
cos θ dθ = dt
∴ I = `- 2 int (log t) * 1/t^4 dt`
Let us take log t as the first function.
I = `- 2 [(log t) int t^-4 dt - int (d/dt (log t) int t^-4 dt)dt]`
`= - 2 [log t(- 1/(3t^3)) - int 1/t(- 1/(3t^3))dt]`
`= -2 [- (log t)/3t^3 + 1/3 int t^-4 dt]`
`= 2/3 (log t)/t^3 - 2/3 (- 1/3 t^-3) + C`
`= 2/9 [(3 log t)/t^3 + 1/t^3] + C`
`= 2/9 [(3 log t + 1)/t^3] + C`
Now t = sin θ and tan θ = x
`therefore t = sin theta = x/(sqrt(1 + x^2))`
`therefore I = 2/9 [(3 log (x/(sqrt(x^2 + 1))) + 1)/(x/sqrt(1 + x^2))^3] + C`
`= (2 (1 + x))^(3/2)/(9x^3) [3 log x/(sqrt(x^2 + 1)) + 1] + C`
`= 2/9 (1 + x^2)^(3/2)/x^3 * 3 log ((1 + x^2)/x^2)^(- 1/2) + 2/9 (1 + x^2)^(3/2)/x^3 + C`
`= - 1/3 (1 + 1/x^2)^(3/2) log (1 + 1/x^2) + 2/9 (1 + 1/x^2)^(3/2) + C`
`= - 1/3 (1 + 1/x^2)^(3/2) [log (1 + 1/x^2) - 2/3] + C`
APPEARS IN
संबंधित प्रश्न
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
`int (dx)/(sin^2x cos^2x) dx` equals
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.