Advertisements
Advertisements
प्रश्न
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
उत्तर
\[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\]
\[\text { Let } x^2 = t\]
\[ \therefore \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( t + 1 \right)\left( t + 4 \right)}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)}\]
\[\text { Let } \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{A}{t + 3} + \frac{B}{t - 5}\]
\[ \Rightarrow 7t + 19 = A\left( t - 5 \right) + B\left( t + 3 \right)\]
\[\text { Putting }t = 5, \text { we get } B = \frac{27}{4}\]
\[\text { Putting } t = - 3, \text { we get } A = \frac{1}{4}\]
\[ \therefore \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{1}{4\left( t + 3 \right)} + \frac{27}{4\left( t - 5 \right)}\]
\[ \Rightarrow \int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx = \int dx + \frac{1}{4}\int\frac{1}{\left( x^2 + 3 \right)}dx + \frac{27}{4}\int\frac{1}{\left( x^2 - 5 \right)}dx\]
\[ = x + \frac{1}{4 \times \sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{4} \times \frac{1}{2\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]
\[ = x + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{8\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int tan^(-1) sqrtx dx`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (xdx)/((x - 1)(x - 2))` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.