हिंदी

Find : ∫ ( X 2 + 1 ) ( X 2 + 4 ) ( X 2 + 3 ) ( X 2 − 5 ) D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .

उत्तर

\[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\]

\[\text { Let } x^2 = t\]

\[ \therefore \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( t + 1 \right)\left( t + 4 \right)}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)}\]

\[\text { Let } \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{A}{t + 3} + \frac{B}{t - 5}\]

\[ \Rightarrow 7t + 19 = A\left( t - 5 \right) + B\left( t + 3 \right)\]

\[\text { Putting }t = 5, \text { we get } B = \frac{27}{4}\]

\[\text { Putting } t = - 3, \text { we get } A = \frac{1}{4}\]

\[ \therefore \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{1}{4\left( t + 3 \right)} + \frac{27}{4\left( t - 5 \right)}\]

\[ \Rightarrow \int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx = \int dx + \frac{1}{4}\int\frac{1}{\left( x^2 + 3 \right)}dx + \frac{27}{4}\int\frac{1}{\left( x^2 - 5 \right)}dx\]

\[ = x + \frac{1}{4 \times \sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{4} \times \frac{1}{2\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]

\[ = x + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{8\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`int (ax^2 + bx + c) dx`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`int(2x^2 - 3sinx + 5sqrtx) dx`


Find the following integrals:

`intsec x (sec x + tan x) dx`


Integrate the function:

`1/(x - x^3)`


Integrate the function:

`1/(x^2(x^4 + 1)^(3/4))`


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`sinx/(sin (x - a))`


Integrate the function:

`(e^(5log x) -  e^(4log x))/(e^(3log x) - e^(2log x))`


Integrate the function:

`x^3/(sqrt(1-x^8)`


Integrate the function:

`e^x/((1+e^x)(2+e^x))`


Integrate the function:

`1/((x^2 + 1)(x^2 + 4))`


Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Integrate the function:

`(2+ sin 2x)/(1+ cos 2x) e^x`


Integrate the function:

`tan^(-1) sqrt((1-x)/(1+x))`


Evaluate `int tan^(-1) sqrtx dx`


Evaluate: `int  (1 - cos x)/(cos x(1 + cos x))  dx`


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int (dx)/sqrt(9x - 4x^2)` equals


`int (xdx)/((x - 1)(x - 2))` equals


`int e^x sec x(1 + tanx) dx` equals


`int sqrt(x^2 - 8x + 7)  dx` is equal to:-


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×