Advertisements
Advertisements
प्रश्न
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
उत्तर
\[2x + 5 = \lambda\frac{d}{dx}\left( 10 - 4x - 3 x^2 \right) + \mu\]
\[ \Rightarrow 2x + 5 = \lambda\left( - 4 - 6x \right) + \mu\]
\[ \Rightarrow 2x + 5 = - 6\lambda x - 4\lambda + \mu\]
\[ \Rightarrow - 6\lambda = 2, - 4\lambda + \mu = 5\]
\[ \Rightarrow \lambda = - \frac{1}{3}, \mu = \frac{11}{3}\]
\[\therefore I = \int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\]
\[\Rightarrow I = \int\left[ - \frac{1}{3}\left( - 4 - 6x \right) + \frac{11}{3} \right]\sqrt{10 - 4x - 3 x^2}dx\]
\[ \Rightarrow I = - \frac{1}{3}\int\left( - 4 - 6x \right)\sqrt{10 - 4x - 3 x^2}dx + \frac{11}{3}\int\sqrt{10 - 4x - 3 x^2}dx \]
\[Put 10 - 4x - 3 x^2 = t in the first integral . \]
\[ \therefore \left( - 4 - 6x \right)dx = dt\]
\[I = - \frac{1}{3}\int\sqrt{t}dt + \frac{11}{3}\int\sqrt{- 3\left( x^2 + \frac{4}{3}x - \frac{10}{3} \right)}dx\]
\[ \Rightarrow I = - \frac{1}{3} \times \frac{2}{3} t^\frac{3}{2} + C_1 + \frac{11}{3}\int\sqrt{- 3\left( x^2 + \frac{4}{3}x - \frac{10}{3} + \frac{4}{9} - \frac{4}{9} \right)}dx\]
\[ \Rightarrow I = - \frac{2}{9} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + C_1 + \frac{11}{3}\int\sqrt{- 3\left[ \left( x + \frac{2}{3} \right)^2 - \left( \frac{\sqrt{34}}{3} \right)^2 \right]}dx\]
\[ \Rightarrow I = - \frac{2}{9} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + C_1 + \frac{11 \times \sqrt{3}}{3}\int\sqrt{\left( \frac{\sqrt{34}}{3} \right)^2 - \left( x + \frac{2}{3} \right)^2}dx\]
\[ \Rightarrow I = - \frac{2}{9} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + C_1 \]
\[ + \frac{11\sqrt{3}}{3}\left[ \frac{1}{2}\left( x + \frac{2}{3} \right)\sqrt{\frac{34}{9} - \left( x + \frac{2}{3} \right)^2} + \frac{\frac{34}{9}}{2} \sin^{- 1} \left( \frac{x + \frac{2}{3}}{\frac{\sqrt{34}}{3}} \right) + C_2 \right]\]
\[ \Rightarrow I = - \frac{2}{9} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + \frac{11}{2\sqrt{3}}\left( x + \frac{2}{3} \right)\sqrt{\left( \frac{34}{9} \right) - \left( x + \frac{2}{3} \right)^2} + \frac{187}{9\sqrt{3}} \sin^{- 1} \left( \frac{3x + 2}{\sqrt{34}} \right) + C\]
APPEARS IN
संबंधित प्रश्न
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]