हिंदी

Evaluate : π ∫ 0 X 1 + Sin α Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .

उत्तर

\[Let I = \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]

\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \sin\alpha \sin\left( \pi - x \right)}dx \left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]

\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]

\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - I\]

\[ \Rightarrow 2I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx\]

\[ \Rightarrow 2I = \pi \int\limits_0^\pi \frac{1}{1 + sin\alpha sin x}dx\]

\[\text { Substituting }\sin x = \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}, \text { we get }\]

\[2I = \pi \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + sin\alpha \times 2\tan\frac{x}{2}}dx\]

\[I = \frac{\pi}{2} \int\limits_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \sin\alpha \times 2\tan\frac{x}{2}}dx\]

\[\text { Let } \tan\frac{x}{2} = t, d\left( \tan\frac{x}{2} \right) = dt \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]

\[\text { Also }, \]

\[\text { When } x \to 0, t \to \tan0 = 0\]

\[\text { When } x \to \pi, t \to \tan\frac{\pi}{2} = \infty \]

\[ \therefore I = \frac{\pi}{2} \int\limits_0^\infty \frac{2dt}{t^2 + 2t\sin\alpha + 1}\]

\[ \Rightarrow I = \pi \int\limits_0^\infty \frac{1}{\left( t + \sin\alpha \right)^2 + \cos^2 \alpha}dt\]

\[ \Rightarrow I = \frac{\pi}{\cos\alpha} \left[ \tan^{- 1} \left( \frac{t + \sin\alpha}{\cos\alpha} \right) \right]_0^\infty \]

\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left[ \tan^{- 1} \infty - \tan^{- 1} \left( \tan\alpha \right) \right]\]

\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left( \frac{\pi}{2} - \alpha \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Foreign Set 2

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int_0^1 | x\sin \pi x | dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×