Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
विकल्प
0
1/2
2
3/2
उत्तर
2
\[\int_0^\pi \frac{1}{1 + \sin x} d x\]
\[ = \int_0^\pi \frac{1}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x}dx\]
\[ = \int_0^\pi \frac{1 - \sin x}{1 - \sin^2 x}dx\]
\[ = \int_0^\pi \frac{1 - \sin x}{\cos^2 x}dx\]
\[ = \int_0^\pi \left( se c^2 x - \sec x \tan x \right) dx\]
\[ = \left[ \tan x - sec x \right]_0^\pi \]
\[ = 0 + 1 - 0 + 1\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
Solve each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`