Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \tan x + \cot x \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin^2 x + \cos^2 x}{\sin x\cos x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \sin^2 x \cos^2 xdx\]
\[= \frac{1}{4} \int_0^\frac{\pi}{4} \left( 2\sin x\cos x \right)^2 dx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \sin^2 2xdx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \left( \frac{1 - \cos4x}{2} \right)dx\]
\[ = \frac{1}{8} \int_0^\frac{\pi}{4} dx - \frac{1}{8} \int_0^\frac{\pi}{4} \cos4xdx\]
\[ = \left.\frac{1}{8} x\right|_0^\frac{\pi}{4} - \left.\frac{1}{8} \left( \frac{\sin4x}{4} \right)\right|_0^\frac{\pi}{4}\]
\[= \frac{1}{8}\left( \frac{\pi}{4} - 0 \right) - \frac{1}{32}\left(\sin \pi - \sin0 \right)\]
\[ = \frac{\pi}{32} - \frac{1}{32} \times \left( 0 - 0 \right)\]
\[ = \frac{\pi}{32}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1