हिंदी

∫ π 4 0 ( Tan X + Cot X ) − 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
योग

उत्तर

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \tan x + \cot x \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin^2 x + \cos^2 x}{\sin x\cos x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \sin^2 x \cos^2 xdx\]

\[= \frac{1}{4} \int_0^\frac{\pi}{4} \left( 2\sin x\cos x \right)^2 dx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \sin^2 2xdx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \left( \frac{1 - \cos4x}{2} \right)dx\]
\[ = \frac{1}{8} \int_0^\frac{\pi}{4} dx - \frac{1}{8} \int_0^\frac{\pi}{4} \cos4xdx\]
\[ = \left.\frac{1}{8} x\right|_0^\frac{\pi}{4} - \left.\frac{1}{8} \left( \frac{\sin4x}{4} \right)\right|_0^\frac{\pi}{4}\]

\[= \frac{1}{8}\left( \frac{\pi}{4} - 0 \right) - \frac{1}{32}\left(\sin \pi - \sin0 \right)\]
\[ = \frac{\pi}{32} - \frac{1}{32} \times \left( 0 - 0 \right)\]
\[ = \frac{\pi}{32}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 64 | पृष्ठ १८

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following:

`Γ (9/2)`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

Γ(n) is


Choose the correct alternative:

If n > 0, then Γ(n) is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×