Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
विकल्प
1
`2 int_0^1 x^3 "e"^(x^4) "d"x`
0
`"e"^(x^4)`
MCQ
उत्तर
0
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]
\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]
If f(2a − x) = −f(x), prove that
\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]
Solve each of the following integral:
\[\int_2^4 \frac{x}{x^2 + 1}dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.