Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
उत्तर
\[\int_0^1 \sqrt{\frac{1 - x}{1 + x}} d x\]
\[ = \int_0^1 \sqrt{\frac{1 - x}{1 + x} \times \frac{1 - x}{1 - x}} d x\]
\[ = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}} d x\]
\[ = \int_0^1 \frac{1}{\sqrt{1 - x^2}}dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}}dx\]
\[ = \left[ \sin^{- 1} x \right]_0^1 + \left[ \sqrt{1 - x^2} \right]_0^1 \]
\[ = \frac{\pi}{2} - 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.