Advertisements
Advertisements
प्रश्न
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
उत्तर
\[Let, I = \int_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} d x ...................(1)\]
\[ = \int_2^3 \frac{\sqrt{5 - x}}{\sqrt{5 - 5 + x} + \sqrt{5 - x}} d x \]
\[ = \int_2^3 \frac{\sqrt{5 - x}}{\sqrt{x} + \sqrt{5 - x}} d x ...................(2)\]
Adding (1) and (2)
\[ 2I = \int_2^3 \left[ \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} + \frac{\sqrt{5 - x}}{\sqrt{x} + \sqrt{5 - x}} \right] d x\]
\[ = \int_2^3 \frac{\sqrt{5 - x} + \sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[ = \int_2^3 dx \]
\[ = \left[ x \right]_2^3 \]
\[ = 3 - 1 = 1\]
\[Hence, I = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Evaluate each of the following integral:
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`