Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }=\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x\left( \sin^2 x \right)} \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left| \sin x \right| \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left( 1 - \cos^2 x \right)\sin\ x\ dx ...................\left( \left| \sin x \right| = \sin x for 0 \leq x \leq \frac{\pi}{2} \right)\]
Put `cos x = z^2`
\[\therefore - \sin\ x\ dx = 2zdz\]
When
When
\[\therefore I = - \int_1^0 z\left( 1 - z^4 \right)2zdz\]
\[ = - 2 \int_1^0 z^2 dz + 2 \int_1^0 z^6 dz\]
\[ = \left.- 2 \times \frac{z^3}{3}\right|_1^0 + \left.2 \times \frac{z^7}{7}\right|_1^0 \]
\[ = - \frac{2}{3}\left( 0 - 1 \right) + \frac{2}{7}\left( 0 - 1 \right)\]
\[ = \frac{2}{3} - \frac{2}{7}\]
\[ = \frac{8}{21}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.