हिंदी

∫ π 2 0 √ Cos X − Cos 3 X ( Sec 2 X − 1 ) Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
योग

उत्तर

\[\text{Let I }=\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[= \int_0^\frac{\pi}{2} \sqrt{\cos x\left( 1 - \cos^2 x \right)}\left( - \tan^2 x \right) \cos^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x\left( \sin^2 x \right)} \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left| \sin x \right| \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left( 1 - \cos^2 x \right)\sin\ x\ dx ...................\left( \left| \sin x \right| = \sin x for 0 \leq x \leq \frac{\pi}{2} \right)\]

Put `cos x = z^2`

\[\therefore - \sin\ x\ dx = 2zdz\]

When

\[x \to 0, z \to 1\]

When

\[x \to \frac{\pi}{2}, z \to 0\]

\[\therefore I = - \int_1^0 z\left( 1 - z^4 \right)2zdz\]
\[ = - 2 \int_1^0 z^2 dz + 2 \int_1^0 z^6 dz\]
\[ = \left.- 2 \times \frac{z^3}{3}\right|_1^0 + \left.2 \times \frac{z^7}{7}\right|_1^0 \]
\[ = - \frac{2}{3}\left( 0 - 1 \right) + \frac{2}{7}\left( 0 - 1 \right)\]
\[ = \frac{2}{3} - \frac{2}{7}\]
\[ = \frac{8}{21}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 61 | पृष्ठ ४०

संबंधित प्रश्न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×