Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{tanx}} d x ................(1) \]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\cot\left( \frac{\pi}{2} - x \right)}}{\sqrt{\cot\left( \left( \frac{\pi}{2} - x \right) \right)} + \sqrt{\tan\left( \frac{\pi}{2} - x \right)}} dx ................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{tanx}}{\sqrt{tanx} + \sqrt{cotx}} dx ..............(2)\]
\[ \text{Adding (1) and (2})\]
\[2I = \int_0^\frac{\pi}{2} \left( \frac{\sqrt{cotx}}{\sqrt{cotx} + \sqrt{tan x}} + \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} \right) d x \]
\[ = \int_0^\frac{\pi}{2} dx \]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\, I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.