Advertisements
Advertisements
प्रश्न
विकल्प
- \[\frac{ \pi}{4}\]
- \[\frac{\pi}{3}\]
- \[\frac{\pi}{2}\]
π
उत्तर
\[Let\, I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} d x ...............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan\left( \frac{\pi}{2} - x \right)} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cot x} d x ................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + \tan x} + \frac{1}{1 + cotx} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{\left( 1 + cotx \right) + \left( 1 + \tan x \right)}{\left( 1 + \tan x \right)\left( 1 + cotx \right)} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{1 + \tan x + cotx + \tan x \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{2 + \tan x + \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\, I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.