हिंदी

Π / 2 ∫ 0 1 1 + Tan X D X is Equal to ,π 4,π 3,π 2, π - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

विकल्प

  • \[\frac{ \pi}{4}\]
  • \[\frac{\pi}{3}\]
  • \[\frac{\pi}{2}\]
  •  π

MCQ

उत्तर

\[\frac{\pi}{4}\]

\[Let\, I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} d x ...............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan\left( \frac{\pi}{2} - x \right)} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cot x} d x ................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + \tan x} + \frac{1}{1 + cotx} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{\left( 1 + cotx \right) + \left( 1 + \tan x \right)}{\left( 1 + \tan x \right)\left( 1 + cotx \right)} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{1 + \tan x + cotx + \tan x \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{2 + \tan x + \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\, I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 19 | पृष्ठ ११८

संबंधित प्रश्न

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×