Advertisements
Advertisements
प्रश्न
विकल्प
1
2
− 1
− 2
उत्तर
2
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin\left| x \right| d x\]
\[ = - \int_{- \frac{\pi}{2}}^0 \sin x\ dx + \int_0^\frac{\pi}{2} \sin x\ dx\]
\[ = - \left[ - \cos x \right]_{- \frac{\pi}{2}}^0 + \left[ - \cos x \right]_0^\frac{\pi}{2} \]
\[ = 1 - 0 - 0 + 1\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`