Advertisements
Advertisements
प्रश्न
विकल्प
−2
2
0
4
उत्तर
2
\[\int_{- 1}^1 \left| 1 - x \right| d x\]
\[ = \int_{- 1}^0 \left( 1 - x \right) dx + \int_0^1 \left( 1 - x \right) dx\]
\[ = \left[ x - \frac{x^2}{2} \right]_{- 1}^0 + \left[ x - \frac{x^2}{2} \right]_0^1 \]
\[ = 0 + 1 + \frac{1}{2} + 1 - \frac{1}{2} - 0\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Prove that:
Solve each of the following integral:
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.