Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} d x . \]
\[Let\ \tan^{- 1} x = t . Then\, \frac{1}{1 + x^2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x\ = 1\, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \sqrt{t} dt\]
\[ \Rightarrow I = \left[ \frac{2 t^\frac{3}{2}}{3} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{2}{3} \left( \frac{\pi}{4} \right)^\frac{3}{2} \]
\[ \Rightarrow I = \frac{1}{12} \pi^\frac{3}{2} \]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.