Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
उत्तर
We have,
\[I = \int_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)}{a^2 \cos^2 \left( \pi - x \right) + b^2 \sin^2 \left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ...............(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \frac{x + \pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]
\[ = \pi \int_0^\pi \frac{1}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]
\[ = \pi \int_0^\pi \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ...............\left(\text{Dividing numerator and denominator by }\cos^2 x \right)\]
\[ = 2\pi \int_0^\frac{\pi}{2} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ..............\left[\text{Using }\int_0^{2a} f\left( x \right)dx = \int_0^a f\left( x \right)dx + \int_0^a f\left( 2a - x \right)dx \right]\]
\[\text{Putting }\tan x = t\]
\[ \Rightarrow \sec^2 x dx = dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to \infty \]
\[ \therefore 2I = 2\pi \int_0^\frac{\pi}{2} \frac{dt}{a^2 + b^2 t^2}\]
\[ \Rightarrow I = \frac{\pi}{b^2} \int_0^\frac{\pi}{2} \frac{dt}{\frac{a^2}{b^2} + t^2}\]
\[ = \frac{\pi}{b^2} \times \frac{b}{a} \left[ \tan^{- 1} \left( \frac{bt}{a} \right) \right]_0^\infty \]
\[ = \frac{\pi}{ab}\left[ \frac{\pi}{2} - 0 \right]\]
\[ = \frac{\pi}{ab} \times \frac{\pi}{2}\]
\[ = \frac{\pi^2}{2ab} \]
\[\text{Hence }I = \frac{\pi^2}{2ab}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Solve each of the following integral:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`