हिंदी

Π ∫ 0 X a 2 Cos 2 X + B 2 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]

योग

उत्तर

We have,

\[I = \int_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ................(1)\]

\[ = \int_0^\pi \frac{\left( \pi - x \right)}{a^2 \cos^2 \left( \pi - x \right) + b^2 \sin^2 \left( \pi - x \right)} d x\]

\[ = \int_0^\pi \frac{\pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ...............(2)\]

Adding (1) and (2)

\[2I = \int_0^\pi \frac{x + \pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]

\[ = \pi \int_0^\pi \frac{1}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]

\[ = \pi \int_0^\pi \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ...............\left(\text{Dividing numerator and denominator by }\cos^2 x \right)\]

\[ = 2\pi \int_0^\frac{\pi}{2} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ..............\left[\text{Using }\int_0^{2a} f\left( x \right)dx = \int_0^a f\left( x \right)dx + \int_0^a f\left( 2a - x \right)dx \right]\]

\[\text{Putting }\tan x = t\]

\[ \Rightarrow \sec^2 x dx = dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \frac{\pi}{2}; t \to \infty \]

\[ \therefore 2I = 2\pi \int_0^\frac{\pi}{2} \frac{dt}{a^2 + b^2 t^2}\]

\[ \Rightarrow I = \frac{\pi}{b^2} \int_0^\frac{\pi}{2} \frac{dt}{\frac{a^2}{b^2} + t^2}\]

\[ = \frac{\pi}{b^2} \times \frac{b}{a} \left[ \tan^{- 1} \left( \frac{bt}{a} \right) \right]_0^\infty \]

\[ = \frac{\pi}{ab}\left[ \frac{\pi}{2} - 0 \right]\]

\[ = \frac{\pi}{ab} \times \frac{\pi}{2}\]

\[ = \frac{\pi^2}{2ab} \]

\[\text{Hence }I = \frac{\pi^2}{2ab}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 43 | पृष्ठ १२२

संबंधित प्रश्न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×