Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
उत्तर
\[I = \int_0^1 ( \cos^{- 1} x )^2 d x\]
\[\text{let }co s^{- 1} x = \theta\]
\[ \Rightarrow x = \cos\theta\]
\[ \Rightarrow dx = - \sin\theta d\theta\]
\[\text{when }x = 0, \theta = \frac{\pi}{2}\text{ and when }x = 1, \theta = 0\]
\[\text{Therefore, }I = \int_\frac{\pi}{2}^0 \theta^2 ( - \sin\theta) d \theta \]
\[I = - \int_\frac{\pi}{2}^0 \theta^2 (sin\theta) d \theta\]
\[I = \int_0^\frac{\pi}{2} \theta^2 (sin\theta) d \theta\]
\[I = \left[ \theta^2 ( - cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta \int_0^\frac{\pi}{2} \sin\theta d \theta\]
\[I = \left[ \theta^2 ( - \cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta( - \cos\theta) d \theta\]
\[= [ - \theta^2 \cos\theta ]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} 2\theta(\cos\theta)d\theta\]
\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta\sin\theta - \int_0^\frac{\pi}{2} \sin\theta d\theta]\]
\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta sin\theta + \cos\theta ]_0^\frac{\pi}{2} \]
\[I = 2\left[\left(\frac{\pi}{2} + 0\right) - 1\right] \]
\[I = \pi - 2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following definite integrals:
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`Γ(3/2)`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`