हिंदी

1 ∫ 0 ( Cos − 1 X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

योग

उत्तर

\[I = \int_0^1 ( \cos^{- 1} x )^2 d x\]

\[\text{let }co s^{- 1} x = \theta\]

\[ \Rightarrow x = \cos\theta\]

\[ \Rightarrow dx = - \sin\theta d\theta\]

\[\text{when }x = 0, \theta = \frac{\pi}{2}\text{ and when }x = 1, \theta = 0\]

\[\text{Therefore, }I = \int_\frac{\pi}{2}^0 \theta^2 ( - \sin\theta) d \theta \]

\[I = - \int_\frac{\pi}{2}^0 \theta^2 (sin\theta) d \theta\]

\[I = \int_0^\frac{\pi}{2} \theta^2 (sin\theta) d \theta\]

\[I = \left[ \theta^2 ( - cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta \int_0^\frac{\pi}{2} \sin\theta d \theta\]

\[I = \left[ \theta^2 ( - \cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta( - \cos\theta) d \theta\]

\[= [ - \theta^2 \cos\theta ]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} 2\theta(\cos\theta)d\theta\]

\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta\sin\theta - \int_0^\frac{\pi}{2} \sin\theta d\theta]\]

\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta sin\theta + \cos\theta ]_0^\frac{\pi}{2} \]

\[I = 2\left[\left(\frac{\pi}{2} + 0\right) - 1\right] \]

\[I = \pi - 2\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 25 | पृष्ठ १२१

संबंधित प्रश्न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`Γ(3/2)`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×