हिंदी

Π / 2 ∫ π / 4 Cot X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]

उत्तर

\[Let\ I = \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\ d\ x\ . Then, \]
\[I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\frac{- (cosec x + \cot x)}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - \cot^2 x}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x + 1}{cosec x + \cot x} dx \left[ \because {cosec}^2 x = 1 + \cot^2 x \right]\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{1}{cosec x + \cot x}dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{\sin x}{1 + \cos x}dx\]
\[ \Rightarrow I = - \left[ \log \left( cosec x + \cot x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} + \left[ \log \left( 1 + \cos x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ \Rightarrow I = - \log \left( 1 + \infty \right) + \log \left( \sqrt{2} + 1 \right) + \log \left( 1 + 0 \right) - \log \left( 1 + \frac{1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \sqrt{2} + 1 \right) - \log \left( \frac{\sqrt{2} + 1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \frac{\sqrt{2}\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} + 1 \right)} \right)\]
\[ \Rightarrow I = \log\sqrt{2}\]
\[ \Rightarrow I = \frac{1}{2}\log 2\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 11 | पृष्ठ १६

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


`int_0^(2a)f(x)dx`


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^4 x dx\]


Evaluate the following:

Γ(4)


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×