English

Π / 2 ∫ π / 4 Cot X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]

Solution

\[Let\ I = \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\ d\ x\ . Then, \]
\[I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\frac{- (cosec x + \cot x)}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - \cot^2 x}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x + 1}{cosec x + \cot x} dx \left[ \because {cosec}^2 x = 1 + \cot^2 x \right]\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{1}{cosec x + \cot x}dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{\sin x}{1 + \cos x}dx\]
\[ \Rightarrow I = - \left[ \log \left( cosec x + \cot x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} + \left[ \log \left( 1 + \cos x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ \Rightarrow I = - \log \left( 1 + \infty \right) + \log \left( \sqrt{2} + 1 \right) + \log \left( 1 + 0 \right) - \log \left( 1 + \frac{1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \sqrt{2} + 1 \right) - \log \left( \frac{\sqrt{2} + 1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \frac{\sqrt{2}\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} + 1 \right)} \right)\]
\[ \Rightarrow I = \log\sqrt{2}\]
\[ \Rightarrow I = \frac{1}{2}\log 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 11 | Page 16

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^\pi x \cos^2 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×