Advertisements
Advertisements
Question
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Solution
\[Let\ I = \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\ d\ x\ . Then, \]
\[I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\frac{- (cosec x + \cot x)}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - \cot^2 x}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x + 1}{cosec x + \cot x} dx \left[ \because {cosec}^2 x = 1 + \cot^2 x \right]\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{1}{cosec x + \cot x}dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{\sin x}{1 + \cos x}dx\]
\[ \Rightarrow I = - \left[ \log \left( cosec x + \cot x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} + \left[ \log \left( 1 + \cos x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ \Rightarrow I = - \log \left( 1 + \infty \right) + \log \left( \sqrt{2} + 1 \right) + \log \left( 1 + 0 \right) - \log \left( 1 + \frac{1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \sqrt{2} + 1 \right) - \log \left( \frac{\sqrt{2} + 1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \frac{\sqrt{2}\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} + 1 \right)} \right)\]
\[ \Rightarrow I = \log\sqrt{2}\]
\[ \Rightarrow I = \frac{1}{2}\log 2\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.