English

Π ∫ 0 1 a + B Cos X D X = - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

Options

  • \[\frac{\pi}{\sqrt{a^2 - b^2}}\]

  • \[\frac{\pi}{ab}\]
  • \[\frac{\pi}{a^2 + b^2}\]

  • (a + b) π

MCQ

Solution

\[\frac{\pi}{\sqrt{a^2 - b^2}}\]

We have

\[I = \int_0^\pi \frac{1}{a + b\cos x} d x\]

\[ = \int_0^\pi \frac{1}{a + b\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]

\[= \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{a\left( 1 + \tan^2 \frac{x}{2} \right) + b\left( 1 - \tan^2 \frac{x}{2} \right)} d x\]

\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{\left( a + b \right) + \left( a - b \right) \tan^2 \frac{x}{2}}dx\]

\[ = \int_0^\pi \frac{\sec^2 \frac{x}{2}}{\left( a + b \right) + \left( a - b \right) \tan^2 \frac{x}{2}}dx\]

\[\text{Putting} \tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]

\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2 dt\]

\[When\ x \to 0; t \to 0\]

\[and\ x \to \pi; t \to \infty \]

\[ \therefore I = \int_0^\infty \frac{2dt}{\left( a + b \right) + \left( a - b \right) t^2}\]

\[ = \frac{2}{a - b} \int_0^\infty \frac{1}{\left( \frac{a + b}{a - b} \right) + t^2}dt\]

\[= \frac{2}{\left( a - b \right)} \int_0^\infty \frac{1}{\left( \sqrt{\frac{a + b}{a - b}} \right)^2 + t^2}dt\]

\[ = \frac{2}{\left( a - b \right)} \times \sqrt{\frac{a - b}{a + b}} \left[ \tan^{- 1} \frac{t}{\sqrt{\frac{a + b}{a - b}}} \right]_0^\infty \]

\[ = \frac{2}{\sqrt{a^2 - b^2}}\left[ \frac{\pi}{2} - 0 \right]\]

\[ = \frac{2}{\sqrt{a^2 - b^2}}\left[ \frac{\pi}{2} \right]\]

\[ = \frac{\pi}{\sqrt{a^2 - b^2}}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 11 | Page 117

RELATED QUESTIONS

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int_0^1 | x\sin \pi x | dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×