Advertisements
Advertisements
Question
Options
\[\frac{\pi}{\sqrt{a^2 - b^2}}\]
- \[\frac{\pi}{ab}\]
\[\frac{\pi}{a^2 + b^2}\]
(a + b) π
Solution
\[\frac{\pi}{\sqrt{a^2 - b^2}}\]
We have
\[I = \int_0^\pi \frac{1}{a + b\cos x} d x\]
\[ = \int_0^\pi \frac{1}{a + b\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[= \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{a\left( 1 + \tan^2 \frac{x}{2} \right) + b\left( 1 - \tan^2 \frac{x}{2} \right)} d x\]
\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{\left( a + b \right) + \left( a - b \right) \tan^2 \frac{x}{2}}dx\]
\[ = \int_0^\pi \frac{\sec^2 \frac{x}{2}}{\left( a + b \right) + \left( a - b \right) \tan^2 \frac{x}{2}}dx\]
\[\text{Putting} \tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2 dt\]
\[When\ x \to 0; t \to 0\]
\[and\ x \to \pi; t \to \infty \]
\[ \therefore I = \int_0^\infty \frac{2dt}{\left( a + b \right) + \left( a - b \right) t^2}\]
\[ = \frac{2}{a - b} \int_0^\infty \frac{1}{\left( \frac{a + b}{a - b} \right) + t^2}dt\]
\[= \frac{2}{\left( a - b \right)} \int_0^\infty \frac{1}{\left( \sqrt{\frac{a + b}{a - b}} \right)^2 + t^2}dt\]
\[ = \frac{2}{\left( a - b \right)} \times \sqrt{\frac{a - b}{a + b}} \left[ \tan^{- 1} \frac{t}{\sqrt{\frac{a + b}{a - b}}} \right]_0^\infty \]
\[ = \frac{2}{\sqrt{a^2 - b^2}}\left[ \frac{\pi}{2} - 0 \right]\]
\[ = \frac{2}{\sqrt{a^2 - b^2}}\left[ \frac{\pi}{2} \right]\]
\[ = \frac{\pi}{\sqrt{a^2 - b^2}}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.