English

Π / 3 ∫ π / 6 1 1 + √ Tan X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]
Sum

Solution

\[Let\ I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{\tan x}} d x .................(1)\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{\tan\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}} d x\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cotx}}dx ....................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \frac{1}{1 + \sqrt{\tan x}} + \frac{1}{1 + \sqrt{cotx}} \right) d x \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{1 + \sqrt{cotx} + \sqrt{\tan x} + \sqrt{\tan x cotx}} \right) dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} dx = \left[ x \right]_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \frac{\pi}{3} - \frac{\pi}{6}\]
\[ \therefore 2I = \frac{\pi}{6}\]
\[Hence\ I = \frac{\pi}{12}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.4 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.4 | Q 15 | Page 61

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×