Advertisements
Advertisements
Question
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Solution
\[\text{Let I} =\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx ........................\left( 1 \right)\]
Then,
\[I = \int_a^b \frac{\left( a + b - x \right)^\frac{1}{n}}{\left( a + b - x \right)^\frac{1}{n} + \left[ a + b - \left( a + b - x \right) \right]^\frac{1}{n}}dx .........................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_a^b \frac{\left( a + b - x \right)^\frac{1}{n}}{\left( a + b - x \right)^\frac{1}{n} + x^\frac{1}{n}}dx ...................\left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_a^b \frac{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx\]
\[ \Rightarrow 2I = \int_a^b dx\]
\[ \Rightarrow 2I = x_a^b = \left( b - a \right)\]
\[ \Rightarrow I = \frac{b - a}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2