Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = 2, f\left( x \right) = e^x , h = \frac{2 - 0}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_0^2 e^x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ e^0 + e^h + e^{2h} + . . . . . . . + e^\left( n - 1 \right)h \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\left( e^h \right)^n - 1}{e^h - 1} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{e^2 - 1}{\frac{e^h - 1}{h}} \right]\]
\[ = \frac{e^2 - 1}{1}\]
\[ = e^2 - 1\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.