Advertisements
Advertisements
Question
The value of `int_2^3 x/(x^2 + 1)`dx is ______.
Options
`log 4`
`log 3/2`
`1/2 log2`
`log 9/4`
Solution
The value of `int_2^3 x/(x^2 + 1)`dx is `underline(bb(1/2 log 2))`.
Explanation:
`int_2^3 x/(x^2 + 1) = 1/2 [log(x^2 + 1)]_2^3`
= `1/2 (log 10 - log 5)`
= `1/2 log (10/5)`
= `1/2 log 2`
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`