Advertisements
Advertisements
Question
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Solution
L.H.S. = `int (2x + 3)/(x^2 + 3x) "d"x`
Put x2 + 3x = t
∴ (2x + 3) dx = dt
⇒ `int "dt"/"t" = log |"t"|`
⇒ `log |x^2 + 3x| + "C"` = R.H.S.
L.H.S. = R.H.S.
Hence verified.
APPEARS IN
RELATED QUESTIONS
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`