Advertisements
Advertisements
Question
\[\int\limits_{- 1}^1 e^{2x} dx\]
Solution
\[\text{Here }a = - 1, b = 1, f\left( x \right) = e^{2x} , h = \frac{1 + 1}{n} = \frac{2}{n}\]
Therefore,
\[ \int_{- 1}^1 e^{2x} d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ f\left( - 1 \right) + f\left( - 1 + h \right) + . . . . . . . . . . + f\left( - 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ e^{- 2} + e^{2\left( - 1 + h \right)} + e^{2\left( - 1 + 2h \right)} + . . . . . . . + e^{2\left( - 1 + \left( n - 1 \right)h \right)} \right]\]
\[ = \lim_{h \to 0} h e^{- 2} \left[ \frac{\left( e^{2h} \right)^n - 1}{e^{2h} - 1} \right]\]
\[ = \lim_{h \to 0} e^{- 2} \left[ \frac{e^4 - 1}{\frac{e^{2h} - 1}{2h}} \right] \times \frac{1}{2} .......................\left(\text{Since, nh = 2 }\right)\]
\[ = \frac{1}{2}\left( e^2 - e^{- 2} \right)\]
APPEARS IN
RELATED QUESTIONS
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
`int x^3/(x + 1)` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`