English

∫ π 4 0 ( Tan X + Cot X ) − 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
Sum

Solution

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \tan x + \cot x \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin^2 x + \cos^2 x}{\sin x\cos x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \sin^2 x \cos^2 xdx\]

\[= \frac{1}{4} \int_0^\frac{\pi}{4} \left( 2\sin x\cos x \right)^2 dx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \sin^2 2xdx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \left( \frac{1 - \cos4x}{2} \right)dx\]
\[ = \frac{1}{8} \int_0^\frac{\pi}{4} dx - \frac{1}{8} \int_0^\frac{\pi}{4} \cos4xdx\]
\[ = \left.\frac{1}{8} x\right|_0^\frac{\pi}{4} - \left.\frac{1}{8} \left( \frac{\sin4x}{4} \right)\right|_0^\frac{\pi}{4}\]

\[= \frac{1}{8}\left( \frac{\pi}{4} - 0 \right) - \frac{1}{32}\left(\sin \pi - \sin0 \right)\]
\[ = \frac{\pi}{32} - \frac{1}{32} \times \left( 0 - 0 \right)\]
\[ = \frac{\pi}{32}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 64 | Page 18

RELATED QUESTIONS

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×