Advertisements
Advertisements
Question
Solution
\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \tan x + \cot x \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin^2 x + \cos^2 x}{\sin x\cos x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \sin^2 x \cos^2 xdx\]
\[= \frac{1}{4} \int_0^\frac{\pi}{4} \left( 2\sin x\cos x \right)^2 dx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \sin^2 2xdx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \left( \frac{1 - \cos4x}{2} \right)dx\]
\[ = \frac{1}{8} \int_0^\frac{\pi}{4} dx - \frac{1}{8} \int_0^\frac{\pi}{4} \cos4xdx\]
\[ = \left.\frac{1}{8} x\right|_0^\frac{\pi}{4} - \left.\frac{1}{8} \left( \frac{\sin4x}{4} \right)\right|_0^\frac{\pi}{4}\]
\[= \frac{1}{8}\left( \frac{\pi}{4} - 0 \right) - \frac{1}{32}\left(\sin \pi - \sin0 \right)\]
\[ = \frac{\pi}{32} - \frac{1}{32} \times \left( 0 - 0 \right)\]
\[ = \frac{\pi}{32}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Solve each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.