Advertisements
Advertisements
Question
Solution
\[\int_0^2 \sqrt{4 - x^2} d x\]
\[ = \int_0^2 \sqrt{2^2 - x^2} d x\]
\[ = \left[ \frac{x}{2}\sqrt{4 - x^2} + \frac{1}{2} \times 2^2 \sin^{- 1} \frac{x}{2} \right]_0^2 \]
\[ = \left[ \frac{x}{2}\sqrt{4 - x^2} \right]_0^2 + 2 \left[ \sin^{- 1} \frac{x}{2} \right]_0^2 \]
\[ = 0 + 2\left( \frac{\pi}{2} - 0 \right)\]
\[ = \pi\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.