Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\pi \sin^3 x \left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 d x . Then, \]
\[I = \int_0^\pi \sin x \sin^2 x \left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 d x\]
\[ \Rightarrow I = \int_0^\pi \sin x \left( 1 - \cos^2 x \right)\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 d x\]
\[ \Rightarrow I = \int_0^\pi \sin x \left( 1 - \cos x \right)\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^3 d x\]
\[Let\ \cos x = t . Then, - \sin\ x\ dx\ = dt\]
\[When\ x = 0, t = 1\ and\ x\ = \pi, t = - 1\]
\[ \therefore I = - \int_1^{- 1} \left( 1 - t \right)\left( 1 + 2t \right) \left( 1 + t \right)^3 dt\]
\[ \Rightarrow I = \int_{- 1}^1 \left( 1 + t - 2 t^2 \right)\left( 1 + t^3 + 3t + 3 t^2 \right) dt\]
\[ \Rightarrow I = \int_{- 1}^1 \left( 1 + t^3 + 3t + 3 t^2 + t + t^4 + 3 t^2 + 3 t^3 - 2 t^2 - 2 t^5 - 6 t^3 - 6 t^4 \right) dt\]
\[ \Rightarrow I = \int_{- 1}^1 \left( 1 + 4t + 4 t^2 - 2 t^3 - 5 t^4 - 2 t^5 \right) dt\]
\[ \Rightarrow I = \left[ t + 2 t^2 + \frac{4 t^3}{3} - \frac{t^4}{2} - t^5 - \frac{t^6}{3} \right]_{- 1}^1 \]
\[ \Rightarrow I = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} + 1 - 2 + \frac{4}{3} + \frac{1}{2} - 1 + \frac{1}{3}\]
\[ \Rightarrow I = \frac{8}{3}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`