Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \cos^4 x\ dx\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \left( \cos^2 x \right)^2 dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\left( 1 + \cos 2x \right)^2}{4} dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( 1 + \cos^2 2x + 2 \cos 2x \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( 1 + 2 \cos 2x + \frac{1 + \cos 4x}{2} \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( \frac{3 + 4 \cos 2x + \cos 4x}{2} \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \left[ \frac{3x}{2} + \frac{2 \sin 2x}{2} + \frac{\sin 4x}{8} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{4}\left[ \frac{3\pi}{4} + 0 \right]\]
\[ \Rightarrow I = \frac{3\pi}{16}\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find: `int logx/(1 + log x)^2 dx`