Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = a, b = b, f\left( x \right) = \cos x, h = \frac{b - a}{n}\]
Therefore,
\[I = \int_a^b \cos x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \cos\left( a \right) + \cos\left( a + h \right) + . . . + \cos\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\cos\left\{ a + \left( n - 1 \right)\frac{h}{2} \right\}\sin\frac{nh}{2}}{\sin\frac{h}{2}} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{\frac{h}{2}}{\sin\frac{h}{2}}2\cos\left( a + \frac{b - a}{2} - \frac{h}{2} \right) \sin\left( \frac{b - a}{2} \right) \right] ..............\left(\text{Using }nh = b - a \right)\]
\[ = \lim_{h \to 0} \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times \lim_{h \to 0} 2\cos\left( \frac{a + b}{2} - \frac{h}{2} \right)\sin\left( \frac{b - a}{2} \right)\]
\[ = 2\cos\left( \frac{a + b}{2} \right)\sin\left( \frac{b - a}{2} \right)\]
\[ = \sin b - \sin a .....................\left[\text{Since, }2\cos A \sin B = \sin\left( A + B \right) - \sin\left( A - B \right) \right]\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Prove that:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.