Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\pi \frac{1}{3 + 2 \sin x + \cos x} d x . Then, \]
\[I = \int_0^\pi \frac{1}{3 + 2\left( \frac{2 \tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{2 \tan^2 \frac{x}{2} + 4 \tan \frac{x}{2} + 4} dx\]
\[Let \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \pi, t = \infty \]
\[ \therefore I = \int_0^\infty \frac{2 dt}{2 t^2 + 4t + 4}\]
\[ \Rightarrow I = \int_0^\infty \frac{dt}{\left( t + 1 \right)^2 + 1}\]
\[ \Rightarrow I = \left[ \tan^{- 1} \left( t + 1 \right) \right]_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{2} - \frac{\pi}{4}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`