Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \tan^{- 1} x\ d\ x\ . Then, \]
\[I = \int_0^1 1 \tan^{- 1} x\ d\ x\]
\[\text{Integrating by parts}\]
\[I = \left[ x \tan^{- 1} x \right]_0^1 - \int_0^1 \frac{x}{1 + x^2} d x\]
\[ \Rightarrow I = \left[ x \tan^{- 1} x \right]_0^1 - \frac{1}{2} \left[ \log \left( x^2 + 1 \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{4} - 0 - \frac{1}{2} \log 2 + 0\]
\[ \Rightarrow I = \frac{\pi}{4} - \frac{1}{2} \log 2\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
`int x^3/(x + 1)` is equal to ______.