Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \sqrt{x\left( 1 - x \right)} d x . Then, \]
\[I = \int_0^1 \sqrt{\frac{1}{4} - \left( x - \frac{1}{2} \right)^2} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \frac{\left( x - \frac{1}{2} \right)^2}{\frac{1}{4}}} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right)^2} dx\]
\[Let \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) = \sin u\]
\[ \Rightarrow 2 dx = \cos u du\]
\[ \therefore I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sqrt{1 - \sin^2 u} \cos u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos 2u + 1}{2} \right) du\]
\[ \Rightarrow I = \frac{1}{8} \left[ \frac{\sin 2u}{2} + u \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ \Rightarrow I = \frac{\pi}{8}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f is an integrable function, show that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate :
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`