English

1 ∫ 0 √ X ( 1 − X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

Solution

\[Let\ I = \int_0^1 \sqrt{x\left( 1 - x \right)} d x . Then, \]
\[I = \int_0^1 \sqrt{\frac{1}{4} - \left( x - \frac{1}{2} \right)^2} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \frac{\left( x - \frac{1}{2} \right)^2}{\frac{1}{4}}} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right)^2} dx\]
\[Let \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) = \sin u\]
\[ \Rightarrow 2 dx = \cos u du\]
\[ \therefore I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sqrt{1 - \sin^2 u} \cos u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos 2u + 1}{2} \right) du\]
\[ \Rightarrow I = \frac{1}{8} \left[ \frac{\sin 2u}{2} + u \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ \Rightarrow I = \frac{\pi}{8}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 41 | Page 17

RELATED QUESTIONS

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×