Advertisements
Advertisements
Question
Solution
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 1, b = 4, f\left( x \right) = x^2 - x, h = \frac{4 - 1}{n} = \frac{3}{n}\]
Therefore,
\[I = \int_1^4 \left( x^2 - x \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 1 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 1 - 1 \right) + \left\{ \left( 1 + h \right)^2 - \left( 1 + h \right) \right\} + . . . . . . . . . . . . . . . + \left\{ \left( 1 + \left( n - 1 \right)h \right)^2 - \left( 1 + \left( n - 1 \right)h \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} + 1 + 2h\left\{ 1 + 2 + . . . . . . + \left( n - 1 \right) \right\} - n - h\left\{ 1 + 2 + . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + h\frac{\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{3}{n}\left[ \frac{9\left( n - 1 \right)\left( 2n - 1 \right)}{6n} + \frac{3\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} 3\left[ \frac{3}{2}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) + \frac{3}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 9 + \frac{9}{2}\]
\[ = \frac{27}{2}\]
APPEARS IN
RELATED QUESTIONS
Solve each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
Γ(4)
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`